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Abstract—The MapReduce (M/R) framework used in Hadoop
has become the de facto standard for Big Data analytics.
However, the lack of network-awareness of the default MapRe-
duce resource manager in a traditional IP network can cause
unbalanced job scheduling and network bottlenecks; such factors
can eventually lead to an increase in the Hadoop MapReduce
job completion time. In this work, we propose a Software-
Defined Network (SDN) approach in an Application-Aware Net-
work (AAN) platform that provides both underlying networks
functions as well MapReduce particular forwarding logics. We
measure the resources’ usage for MapReduce workloads using the
HiBench benchmark suite to identify the traffic pattern. We then
demonstrate that by using our AAN-SDN framework, which uses
an adaptive traffic engineering mechanism, the job completion
time can be noticeably improved.

Index Terms—Application-Aware Network, Data Center Net-
work, MapReduce, Software-Defined Networks, OpenFlow, Big
Data.

I. INTRODUCTION

The rapid development of cloud services, mobility, Internet
of Things (IoT) sensors, and video streaming services not only
led to an explosion of network data but is also challenging the
existing network management and monitoring system. Users
pay the premium and also expect quality on-demand access
to those applications, infrastructure, and other IT resources.
Handling today’s mega datasets requires massive parallel pro-
cessing that also puts a constant need on flexible capabili-
ties from the underlying network. Network-based applications
themselves are increasingly growing and require massively
distributed computation.

To handle the ever-increasing data size, Hadoop [1] MapRe-
duce (M/R) is a scalable framework that allows dedicated
and a seemingly unbound number of servers to participate
in the analytics process. The response time of an analytics
request is a major factor for time to gain data insights.
Hadoop has been designed as a shared computing and storage
platform and supports parallel computing of jobs for multiple
users. While the computing and disk I/O requirements can
be scaled with the number of servers, scaling the system
lead to increased network traffic in the underlying network.
Arguably, the communication-heavy phase of M/R contributes
significantly to the overall response time. This problem is
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further aggravated, if communication patterns are heavily
skewed, which is common in many MR workloads. Most of
this caveat of the MapReduce program is because the default
Hadoop resource manager does not take the network condition
into consideration for job scheduling.

The emergence of Application-aware Networks (AAN) pro-
vides a new approach for managing Hadoop network traf-
fic.The AAN provides the capability of an intelligent network
to maintain current information about applications that connect
to it and as a result, optimize their functioning as well
as that of other applications or systems that they control.
The information maintained includes the application state and
resource requirements. For example, a port number based
application identification is common in a controlled network
environment. The traditional IP network provides best-effort
services for the applications. Each network device requires
operator’s particular configuration. It is difficult to write any
application controller or other routing protocol in general. As
more and more applications are moving toward cloud services,
the best-effort service may not provide the quality that users
expect to experience.

A software-based solution using the software-defined net-
working (SDN) is a fine-grained way of controlling individual
application and network devices. AAN benefits from SDN
in two ways: first, by enabling dynamic control, configuration
and giving the ability of AAN to allocate resources at any
given moment; second, by running network controls on a
separate server from the traffic forward device.

In this work, we focus on Hadoop computation using
an AAN framework through SDN when Hadoop nodes are
spread out over a network. Such a situation occurs when due
to the size of the Hadoop workload, the number of nodes
needed cannot be satisfied from just one physical location.
For our work, we first examine Hadoop traffic at length for
the HiBench benchmark suite and how SDN can be used
to optimize through AAN. We then present our AAN-SDN
framework and show the gain when this framework is used for
Hadoop applications. To our knowledge, such an approach has
not been taken by other researchers on network softwarization
to benefit Hadoop applications.

A. Motivation

A great deal of consideration must be put in place when
managing a Hadoop cluster using resources for running
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MapReduce jobs in order to fully understand Hadoop traffic.
The key elements are summarized as follows:

1) The block size and split size: Hadoop uses blocks and
split size to control how many blocks are being divided
and used when running MapReduced jobs.

2) Block replication factor: Hadoop uses this approach to
prevent data loss because of common hardware failures.

3) The physical configuration of hardware resources: This
includes CPU, memory, hard disk capacity, interconnec-
tion network link speed and the number of slave nodes.

4) Java Virtual Machine(JVM): Hadoop uses JVM to com-
plete jobs. The number of resources, mainly CPU and
memory, can be assigned to each created JVM. Because
the process of creation and killing of such resources
takes time, the rule of thumbs when using JVM is that
the less mapper is better, which leads to less JVM
creation and less killing time. However, this must be
accomplished by being given sufficient resources to start
with for the submitted jobs.

5) Hadoop cluster topology: How slaves deploy across
the Hadoop cluster can be critical and depends on the
assigned network bandwidth between master nodes and
slave/data nodes.

6) Other Hadoop performance tuning methods: Additional
factors such as the number of files, file size, JVM
Reuse and combiners are also important for Hadoop
performance tuning.

In a traditional IP network setting, existing Hadoop resource
allocation algorithms [2]–[4] have performed well under the
assumption that the network is not congested and a job is
assumed to be completed under the presumed time range.
However, when the network becomes congested during job
runs, both the Hadoop master and system administrator have
less control over the job run time if no traffic flow optimization
is performed in time.

B. Our Contributions

In this paper, we present an AAN environment for Hadoop
M/R optimization using the SDN architecture. We introduce
tools and traffic reroute mechanisms for Hadoop application
optimization. We first focus on understanding resource usage
of difference MapReduce jobs and shuffle traffic patterns in
order to identify possible network congestion problems that
can lead to delay in job completion. Then, we ran real-world
MapReduce applications using our proposed AAN environ-
ment that uses SDN architecture to show improvement on the
overall job completion time.

Within an AAN environment using SDN, the controls can
be given by a fine-granularity flow management in an SDN
controller with adaptive traffic engineering to a contested
network situation. Our contributions are as follows:

1) An application-aware framework with SDN
2) A new ARP (address resolution protocol) flooding avoid-

ance resolver algorithm for our framework
3) A data flow model to improve the data movement

efficiency for MapReduce related workloads

4) An adaptive traffic engineering mechanism for the AAN-
SDN environment for Hadoop applications

The main benefits of our AAN approach are as follows:

1) It allows a controllable Hadoop cluster management
system and a fine-granular application control platform
using the SDN architecture.

2) It provides an open programming interface for more in-
telligent Hadoop resource allocations with consideration
of global network traffic information.

For our study, we used the HiBench benchmark suite (with
over 300 test cases) in two ways: 1) to obtain an understanding
of Hadoop traffic, and 2) to show the gain with our Hadoop-
AAN environment.

The rest of the paper is organized as follows. Section II
presents a brief background on SDN, Hadoop MapReduce,
and the HiBench benchmark suite. In Section III, we further
explain the HiBench configuration and report initial mea-
surements for the benchmark suite for a set of small static
topology configurations in terms of use and traffic patterns.
In Section IV, we present our proposed AAN-SdN frame-
work. Section V explains our network topology on which
we conducted an SDN adaptive traffic engineering approach
to optimize MapReduce workloads in terms of the overall
completion time using the proposed AAN platform and show-
ing the gain with our approach. Section VI describes related
work regarding individual MapReduce workload studies and
optimization approaches. We then present our concluding
remarks in Section VII.

II. BACKGROUND

We first present a brief background on three important
parts for our work: software-defined networking, MapReduce
framework, and HiBench benchmark suite.

A. Software-defined Networking

Software-Defined Networking (SDN) [5], [6] provides a
dynamic, manageable and cost-effective platform for making
it an important platform for the high-bandwidth, dynamic
nature of today’s network applications. Fig. 1 shows the SDN
architecture. It decouples the control and data forwarding
layers and provides the programing interface for the underlying
forwarding devices as well as upper application layer. The
SouthBound and NorthBound APIs are provided as commu-
nication channels between the SDN layers.

AAN can be realized using an SDN architecture that in-
cludes two main components: an SDN controller and a traffic
forwarding protocol using the forwarding devices. An SDN
controller is a software application that manages application
flows to enable a dynamic and controllable networking en-
vironment. The popular SouthBound communication proto-
cols between SDN controllers and forwarding devices are
OpenFlow [5]–[7], which allows servers to instruct forwarding
devices where to send packets.
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Fig. 1: Software-Defined Network Architecture

B. MapReduce Framework

A Hadoop cluster includes one master node to manage the
cluster’s metadata, such as the Hadoop File System (HDFS)
and a resource manager such as YARN [8] that manages
Job and task tracker for each submitted MapReduce job.
Designated slave nodes run as computing powers. A Hadoop
cluster is normally deployed in a closed and control envi-
ronment such as in an Enterprise or a Campus datacenter
(DC). Hadoop MapReduce [9] is a distributed and parallel
computing framework that runs on top of the Hadoop File
System (HDFS). A typical MapReduce program is composed
of mixed operations among various numbers of mapper and
reducer functions.

Fig. 2: MapReduce WorkFlow

Fig. 2 shows the major MapReduce workflows and data
movements. After the job submission, the input data split into
blocks of data. The number of mapper and reducer functions
plays a vital role to decide how MapReduce jobs are running
on a Hadoop cluster. Based on the design of the MapReduce
platform, there is a critical data movement phase when a
job is running (called shuffle) that represents the output of
a mapper function that is transferred to reduce functions for
the final processing. How fast the shuffle phase is completed
can affect the overall job completion time. We summarize the
possible situations where various traffic patterns might occur
in a Hadoop cluster:

• HDFS management such as a cluster health check
• File reads and writes from HDFS such as data replication,

MapReduce input and output, and Cluster balancing
• Data shuffle among data nodes
• Interaction between TaskTracker such as data shuffles

from mapper to reducer functions and data write back
to HDFS as the final output.

C. HiBench: Bigdata Micro Benchmark Suite

HiBench [10] is a big data benchmark suite that helps
evaluate different big data frameworks in terms of speed,
throughput, and system resource utilization. Hadoop MapRe-
duce workloads in the HiBench benchmark suite include a
number of applications such as Sort, WordCount, SQL, and
PageRank.

Due to our goal of understanding the resources’ usage and
shuffle data traffic pattern and to later use this in our AAN-
SDN environment, we use the workloads’ categories depicted
in Fig. 3 based on given hardware resources. The detailed
HiBench configuration is explained later in Section III-A.

Fig. 3: HiBench Hadoop MapReduce Related Workload
Summary

III. HIBENCH MAPREDUCE: CONFIGURATION AND
INITIAL JOB RUN TIME DATA COLLECTION

Before considering our AAN-SDN framework, we con-
ducted a set of measurements on the Hadoop HiBench bench-
mark suite while keeping the topology simple and static to
understand traffic patterns. We first discuss HiBench configu-
rations used for this work.

A. HiBench Configuration

The main considerations for running a MapReduce job
include the job input size, the number of running slave nodes,
the number of mappers and reducers, and the block size
and location of the slaves. The Hadoop file block size was
set to 32MB due to our limited hardware resources for the
experimental platform and the replication factor is set to 2.
Additional Hadoop related configurations are displayed in
Table II. One of our goals in this work is to understand
the shuffle traffic of Hadoop M/R. The selected configuration
parameters are the key control points for our proposed AAN
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TABLE I: HiBench MapReduce Workloads Configuration Details

Test Configurations A B-1 B-2 B-3 B-4 C-1 C-2 D-1 E-1 E-2 E-3

Data Size (MB) 16 48 240 304 304

Slave Allocation TA TB-1 TB-2 TC TD-4 TE
(# of Mapper,
# of Reducer) (1, 1) (1, 1) (2, 2) (1, 1) (2, 2) (4, 4) (8, 8) (8, 8) (4, 4) (8, 4) (8, 8)

MicroBench Sort

MicroBench WordCount

SQL Join and Scan [11]
Join and Scan
Configurations

Universities=88000
pages=6

Universities=265000
pages=6

Universities=1325000
pages=6

Universities=1680000
pages=6

Universities=1680000
pages=6

WebSearch PageRank

PageRank
Configuration

pages=38200
num interactions=1
block=0
block width=16

pages=110000
num interactions=1
block=0
block width=16

pages=480000
num interactions
block=0
block width=16

pages=610000
num interactions
block=0
block width=16

pages=610000
num interactions
block=0
block width=16

platform. For the rest, Hadoop default parameter values were
used.

The small files problems [12] are avoided by limiting the
total given file size. We setup a HiBench configuration based
on a Hadoop MapReduce job type and the network topology
locations for slave nodes as shown in Table. I. Consider
test configuration “B-1” as an example to explain our setup
of HiBench: its input file size is 48MB. The number of
mappers and reducers set to one each. At this configuration
setup, we compare the run time difference with other “B-
X” configurations as well as other test configurations using
different HiBench settings. Slave locations are depicted in
Fig. 4. For a TA type, only one slave is active for the submitted
job. A TA case sets up a base comparison with other topology
configuration types for the same MapReduce job with respect
to job CPU, memory consumption and how long does it take
to complete the job. We also ran a MapReduce job under
different slave locations using a various number of slave nodes
to understand if the location of the slave could affect the
job completion time. For example in the TB-1 and TB-2
configuration setup, two slaves ran under the same topology
location in TB-1 while they were in different locations for TB-
2. A TE type uses eight slave nodes that are evenly distributed
under four forwarding devices as shown in Fig. 9(a).

Some of the predefined MapReduce jobs in HiBench can
be assigned a particular data size for input such as its micro
workloads, WordCount and Sort, while others use different
input parameters such as for Join and Scan [11] from the SQL
workload. For example, a Join workload using two parameters
to set up the workloads, “number of Universities” and “pages”,
instead of specifying the size of the input data. To ensure our
input data size is the same, we conducted an initial experiment
and derived the following relation based on empirical runs:

HiBench SQL workload: Join, Sort, Aggregation

Input Size(MB) =
Number of Universities ∗ 1.8

105
. (1)

HiBench WebSearch workload: PageRank

Input Size(MB) =
Number of Universities ∗ 2

6
√
2 ∗ 5000

. (2)

We determined that only the parameter, “number of Uni-
versities”, can change the input data size for workloads such
as Join, Scan, and PageRank. By varying the predefined
parameters, we keep our test configuration consistent with the
same amount of input data size for different workloads.

B. Data Collection cases
Hadoop MapReduce hardware resource data collection is

conducted for a set of small static topology configurations. The
goal is to understand the run time resource consumption such
as CPU, memory, and job completion time for each HiBench
workload that is depicted in Table. I. Altogether, there were
330 tests. Because of the size of the test cases, was ran each
test three times for each configuration to compute the average
value; we also calculated the 95% confidence interval (CI)
to determine the oscillatory nature of the MapReduce jobs.
Table IV lists the detailed values for reference. Based on our
observations that different HiBench jobs behave differently,
we first examined the resource usage separately from each
other for each HiBench configuration. We will then present a
combined analysis.

C. Average CPU Usage Summary
Fig. 5(a) depicts the average CPU usage for various config-

urations. From the runs, we made the following observations:
• The single slave node uses CPUs most extensively, com-

pared with other configurations. It has the highest CPU
usage for a single slave node.

• When the number of mappers and reducers increases, the
CPU usage increases slightly using the same input size,
such as B-1 vs. B2 and B3 vs. B4. Even though for E-X
configurations there is a slight drop for some jobs such
as WordCount and Scan, the values are still within the
95%CI range. The reason for such behavior is due to
over resource allocations since our testbed had limited
hardware.

• When the number of slave nodes increases, the average
CPU usage decreases in most our cases; for example,
compare between D-1 and E-X.
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(a) (b) (c) (d)

Fig. 4: Topology Type (a) TA, (b) TB-1, (c) TB-2, (d) TC, TD

(a)

(b)

(c)

Fig. 5: (a) CPU Load Summary, (b) Memory Load Summary, (c) Job Completion time Summary

• The location of a slave node in our setup does not play
a significant role in affecting the overall CPU usage with
consistent bandwidth allocation on each interconnected
link.

• The overall CPU usage has significant oscillation for the
same set of test configurations even with no background
processes running on the same system. The main reason
is due to the efficiency of the JVM resource allocation
and release in the MapReduce platform at the run time
environment.

• PageRank has a higher CPU usage compared to other
jobs, while others show similar CPU usage trends.

D. Average Memory Usage Summary

Fig. 5(b) depicts the average memory usage for various
HiBench configurations. From the runs, we observed the
following:

• A single slave had the lowest memory usage even with
the lowest input data size when comparing configuration
A-1 with others.

• The average memory usage increases dramatically when
the data size increase. For example, the average memory
usage increased nearly 500%(≈ 2500/500) compared to
six times in data growth(≈ 304/48).

• The memory usage was in direct proportion to the number



6

of allocated mappers and reducers. However, in some
cases, we noted opposing results, particularly in the C-
2 and E-X cases. Even though they still fell into the
calculated 95%CI range, the reason for such behavior
was due to over-resource allocations given our hardware’s
limitations.

• The overall memory usage had less oscillation for the
same set of test configurations compared to the CPU
usage.

• All of the jobs had the same level of memory usage when
compared to the same set of configuration runs.

E. Job Completion Time: Comparison

Fig. 5(c) depicts the average job completion time for various
configuration setups. From the runs, we observed the follow-
ing:

• The input size had the largest impact on the average
job completion time. The larger the data size, the longer
it took, such as the comparison between C-X and D-
1. However, with the same input size, more slave nodes
reduced the overall time, such as the comparison between
D-1 and E-X.

• The number of mappers and reducers for the same set of
HiBench workloads also played an important role in the
completion time in most configuration cases except for
Scan. However, in some cases, it showed the opposite
results such as in PageRank. The slight time increased
from E-2 to E-3 was due to over resource allocations on
the given hardware’s limitation.

• Pagerank has a significant time increase compared with
other workloads due to its CPU-intensive nature.

In summary, each HiBench workload behaved differently
even with similar configuration setups. Clearly, understanding
the different behaviors of various MapReduce jobs was an
essential step for us for our SDN-based AAN environment for
MapReduce applications.

IV. AAN-SDN HADOOP ARCHITECTURE AND
IMPLEMENTATION

In this section, we present our proposed AAN-SDN platform
design and implementation. For implementation of SDN, we
used Ryu [13] and OpenFlow v1.3. We first introduced our lay-
ered SDN network architecture then conducted SDN-assisted
MapReduce job completion time optimization. Starting from
the bottom to the top layer, our proposed architecture (see
Fig. 6) segregated our design into three main components:

1) Core SDN controller layer
2) Network control and monitor layer
3) Application-specific layer

A. Core SDN controller layer

In the core SDN layer, we implemented two network
modules, Packet Forwarding, and Traffic Monitoring. In the
packet forwarding module, we applied the network primary
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Fig. 6: SDN Hadoop Experimental Architecture

forwarding functions including the link layer discovery proto-
col (LLDP) in the physical network layer. The implementation
was based on OpenFlow-compatible forwarding devices; in
our cases, we used the Openvswitch (OVS) [14]. In the
network layer, we implemented the forwarding function for the
Internet Control Message Protocol (ICMP) messages, which is
the key mechanism used to give feedback on network problems
that could prevent packet delivery.

Algorithm 1: ARP Resolver Algorithm
Data: ARP Flows ARPr

Result: ARP Processing Decision
(Forwarding/Blocking/NoAction)

ARP cache initialization for each connect switch;
Read incoming ARP packets: arp;
if arp is ARP Broadcast then

if ARP cache is empty then
Add this arp entry to ARP Cache;
Add expire timer to this arp entry;
Flood this arp packet;

else
if arp exists then

if arp entry timer =< ARP Timer then
Renew arp entry timer;
Do not flood this arp packet;

else
Renew arp entry timer;
Flood this arp packet;

end
else

if arp is coming from a different port from existing
arp entry then

Do not flood this arp packet;
else

Add this arp entry to ARP Cache;
Add expire timer to this arp entry;
Flood this arp packet;

end
end

end
else

Forward ARP Request/Reply Packet;
end

Due to the flexibility provided by the SDN framework, we
also addressed a new physical layer flooding avoidance mech-
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anism such as for the address resolution protocol (ARP). In a
traditional IP network, variations of spanning tree protocols
(STP) are widely used to build a loop-free topology. The
configuration of such an STP protocol can be cumbersome
and complicated based on the used forwarding devices. We
designed and implemented an ARP resolver algorithm 1 that
offers smooth ARP package flooding, instead of using a costly
STP protocol as would be the case in a traditional IP network
environment. It also takes care of ARP cache expiration issues
by avoiding to send additional ICMP messages to get an
updated ARP entry.

Above the network transport layer, we implemented TCP
and UDP packet forwarding functions for application-aware
networking. Based on the application layer’s port number
and protocol type, it will forward packets accordingly. In the
traffic monitor module, we implemented lightweight REST-
API services to proactively fetch global network informa-
tion such as port traffic for each forwarding device, flow
installation/modification, and traffic details in a managed time
interval. The REST-APIs are designed to be lightweight with-
out introducing extra overhead for the SDN controller. One
Apache web server collects the pulled results from the REST-
APIs and aggregates traffic details to provide any traffic alerts
and Traffic Engineering (TE) recommendations.

B. Network Control and Monitor Layer, and Adaptive Traffic
Engineering

In the network control and monitoring layer, the global
network topology was discovered where we took an adaptive
traffic engineering approach by feeding into a shortest path
algorithm module to calculate a path for each pair of network
node/hosts on an on-demand basis. The traffic monitor com-

ponent, using REST-APIs’ services, deployed at the core SDN
controller layer proactively pulled network traffic information
from the network. If there were any pre-defined traffic priority
violations, a traffic reroute using a flow reroute component
might happen as explained in Fig. 7 that depicts the primary
traffic reroute workflow. From the beginning, the ARP message
for a network request such as Ping, SSH, or other applications.
It first looks at the flow table and passes the traffic if there is an
existing matching flow or checks if there are ARP broadcasting
messages, otherwise.

Flows are installed based on the path provided by the
shortest path components. Flow reoutes can happen when
background traffic (at time t2) on the same route has over
saturated some of the links along the path through adaptive
traffic engineering. For this, the SDN controller recalculates
a second shortest path in real time and installs new flows to
reroute the application’s traffic.

C. Application Layer

In the Application layer, a port number based application
recognition feature is implemented (such as port 22 is by
default for the remote secure shell (SSH)). In our controlled
network, the port number can be managed/changed via a
separate configuration file that is read by our SDN controller.
With regards to Hadoop applications, HDFS and MapReduce
control components are implemented to instruct how to install
flows regarding Hadoop file operations and job assignments,
accordingly. The modularization of various components pro-
vided by different SDN controllers helps the network admin-
istrator to control them individually in a manageable way.

In this controlled test environment, multiple applications can
run together with separate configuration files. The monitoring
and management modules of the SDN controller can control
network traffic based on these configuration files. For example,
if an application’s port number or IP address gets changed
when the application is running, the SDN controller can read
the real time modification and continue to monitor and control
the network flows without any modification delays. Compared
to a traditional IP network management system, this method
provides a clean and easy method for application monitoring
and management.

V. MAPREDUCE TRAFFIC OPTIMIZATION USING SDN

In this section, we report on experiments conducted using
our proposed AAN-SDN platform to optimize MapReduce job
running oversaturated network links.

Fig. 8: Experimental Network Setup
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(a) (b) (c)

Fig. 9: (a) Network Topology, (b) Traffic Path Before Reroute , (c) Traffic Path After Reroute

Fig. 10: Hadoop MapReduce Intermediate Data Transfer

A. System Workflow

Fig. 8 explains the workflow of our running system. After
the Hadoop and HiBench configuration are completed, the
SDN controller starts to run Hadoop MapReduce jobs. While
such jobs are running, the SDN controller will install flows
based on application types and collect network traffic infor-
mation accordingly.

B. Network Topology

We deployed our SDN-based Hadoop and HiBench en-
vironment on the GENI testbed [15] platform. We setup a
network topology as shown in Fig. 9(a) to emulate a data
center network topology with hosts associated with different
network switches that correspond to Hadoop nodes. We used
Openvswitch (OVS v2.3.1) [13] as our forwarding devices and
numbered the DPID in order from ’1’ to 7’. One Hadoop
master node and eight slaves were deployed. The deployed
nodes have the same hardware configuration with a single core
of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz and 8 GB RAM.
Each connected link has 100 Mbps bandwidth allocation.

C. Network Flow Traffic Capture

Network flow traffic is captured when running the HiBench
workload using SDN by designed REST-API services, which
proactively pulls global network traffic information based on
any given port number. Table II shows the related port number
regarding our MapReduce benchmark tests. For example, data
shuffling traffic is captured during the map-reduce shuffle
phase using port number 50010.

Fig. 10 depicts the data shuffling pattern for each workload.
Detailed flow traffic is listed in Table V. The major traffic has
been captured from port number 50010, the majority of this

TABLE II: Monitored port number

Traffic
Catagory Explanation Port Number

Hadoop File System
Operation (HDFS) 50010

HDFS Hadoop Datanode Transfer 22
Master Node Http IPC 54310

Yarn Resource Scheduler 8030
YARN Yarn Resource Tracker 8031

Yarn Resource Manager 8032
Others Iperf 5001

Secure Shell (SSH) 22

being from the MapReduce shuffling phase. We summarize
our observations as follows:

1) The shuffling data size is in direct proportion to the input
data. Except for the WordCount workload, which has
minimal increase, the others have significant data flows.
This is to show that WordCount has a minimal shuffling
data size. The other cases have more output data than
the input size:

a) The Sort workload has roughly 110% of the input
data size that gets shuffled.

b) In the Join workload, around 70% of the input data
gets shuffled.

c) In the Scan, around 120% of the input data gets
shuffled.

d) In the PageRank about 240% of the input data gets
shuffled.

2) The number of mappers and reducers has no noticeable
effect on the shuffling data sizes, such as the comparison
between C-1 and C-2. The total shuffle size is the sum
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of individual traffic among possible slave nodes.

To have a deeper understanding of what composes the
shuffle traffic, we capture the data transfer for each pair of
slave nodes. Due to the nature of the replication factor we set,
even though the sum of the total shuffle traffic is within our
calculated 95%CI range, the pairs of slave nodes that generate
the shuffle traffic are not fixed for each run. However, we list
a network trace in Table VI to explain the different behaviors
of each workload. By identifying the shuffling pattern, we
understand what the traffic size is and which network link it
takes to transfer the data. From our test results, we summarize
our observations as follows:

1) The number of mappers and reducers plays important
roles for shuffling pairs. For examples, in the B-1 and
B-2 configuration with one and two mappers/reducers,
respectively, there is only one pair of shuffling traffic on
case B-1 but there might be two pairs on B-2. It mostly
depends on the current system load and FIFO resource
allocators.

2) The input data size also contributes to the number
of shuffling pairs. For example, there is a significant
number of pairs that increases from configuration B-X
to E-X.

Consider workload Join with the E-3 test case for an
example to note the randomness of the flow traffic pattern;
the detailed traffic direction is listed in Table VI. There are 53
sets of individual shuffle pairs. The uncertainty of MapReduce
traffic is not easy to address by a traditional IP network with
less individual traffic flow control.

D. ARP Flooding Avoidance using ARP Resolver

Our proposed ARP resolver method (see Algorithm 1)
provides smooth ARP cache expiration and packet flooding,
instead of using a costly STP protocol as would be the case
in a traditional IP network environment. We implemented the
default ARP packet defined in RFC 826, which is 28 bytes.
We then conducted a measurement on how the proposed ARP
can avoid flooding issues using the minimum ARP request
packets. If we use slave nodes S1 and S7 as an example, the
shortest path is S1→Switch 4→Switch 2→Switch 7→S7. If
S1 sends an ARP request, an ARP flooding packet must be
sent out if the previous ARP cache has expired. If that is the
case, the ARP flooding packet will be forwarded to all network
forwarding devices by each other.

Based on our experimental result shown in Fig 11, the
forwarding switch’s CPU can run almost at 100% utilization
without any ARP flooding avoidance methods, which causes
the network to stop functioning properly. However, it only
takes 20 ARP flooding packets (Each ARP broadcasting packet
can only be seen twice by the connecting port) to travel
through the network by using our proposed ARP resolver.
With the minimum number of flooding packets, the proposed
ARP resolver algorithm can minimize the flooding traffic
and destination searching time, without overwhelming the
forwarding switch’s CPU.

Fig. 11: ARP Broadcasting Packet Cause CPU Utilization
High in a Loop Topology

E. SDN Traffic Reroute through Adaptive Traffic Engineering

The behavior of the data shuffle phase for an individual
MapReduce workload has shown various data sizes and pat-
terns based on our study. One can assume that if such a
workload was running on a busy network link, the increase
in delay would be expected. A traditional IP network lacks
real-time global traffic information updates and the network
administrator has less control over a specific network flow
with the minimum cost. With regards to Hadoop MapReduce
applications, data could shuffle from any pair of running slave
nodes. If any delay happens on any of the shuffle phases, the
overall job completion time can be prolonged.

Our goal of running Hadoop MapReduce jobs using the
proposed AAN-SDN architecture is to investigate how much
SDN can alleviate from a busy Hadoop cluster based on the
different sizes of input data and the number of slave nodes.
Table III shows experiment scenarios and test results. Two
cases are considered. The first is 48MB input size with two
slaves nodes and the second is 240MB input size with four
slave nodes. To simulate a busy cluster situation, we induced
background traffic using iperf on selected links.

Fig. 9(b) depicts the MapReduce job path utilization before
reroute. The running Hadoop nodes are marked in green
colors. They are the master node and S3, S4, S5, and S6 are
the slave nodes. For reroute test case 1 (shown in Table III),
slave nodes S3 and S5 ran HiBench workloads. The shortest
path module from the SDN platform installed flows along the
path [P1, P2, P3] at the beginning of the system and ran in
order to start the Hadoop cluster and start MapReduce jobs.
Meanwhile, path [P1, P7, P5, P6] was saved as a backup
shortest path between the master node and slave nodes S3 and
S5.

Iperf background traffic runs on the path [P2, P3] consum-
ing 90Mbps bandwidth, which is our predefined threshold for
any flow reroute scenario. We first disabled the reroute module
and forced the MapReduce jobs to run on the oversaturated
links between S3 and S5 to emulate a static environment.
When the reroute module is enabled, the SDN controller
detects there is data flow over an acceptable threshold of
background traffic along the first pair of the shortest path.
New flows are installed using the backup path [P1, P7, P5,
P6] to avoid any potential delays as shown in Fig. 9(c).
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TABLE III: HiBench Workloads Traffic Reroute Using SDN

Workloads Sort WordCount Join Scan Pagerank
ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2

Slaves S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6
Input Data Size (MB) 48 240 48 240 48 240 48 240 48 240

No Background Traffic with path [ P1, P2, P3] 49±2 338±56 56±3 220±17 171±12 423±38 116±7 146±19 190±18 713±33
Background Traffic with path[ P1, P2, P3] 66±4 483±40 75±2 393±27 216±4 616±63 151±27 208±43 256±56 1022±224

SDN Reroute Path[ P1, P5, P6, P7] 55±2 360±62 61±3 234±18 187±10 452±30 130±3 167±34 212±7 745±20
Reroute Time Consumption 7±1 24±10 8±5 14±27 16±13 29±15 14±5 21±14 23±16 31±15

Improvement 20.00% 34.00% 22.00% 68.00% 16.00% 36.00% 16.00% 25.00% 20.00% 337.00%

In summary, Fig. 12 shows that with our adaptive traffic
engineering approach through rerouting, the MapReduce Job
completion time can be reduced by 16% to 300% depending
on test case configurations. The improvement is varied and
it depends on the different behaviors of each MapReduce job.
Consider the PageRank for example; its shuffle phase has over
200% more data output compared with the input data size.
It also has the most run time efficacy improvement in terms
of job completion time. Even though the improvements for
other jobs are not as significant as PageRank, it still shows an
increasing trend when the data input size increases.

Fig. 12: Hadoop Job Run Time Comparison

As our result shows, our AAN platform for Hadoop MapRe-
duce job optimization offer a significant improvement com-
pared to a static, traditional IP network environment. Our
design can be extended to other MapReduce jobs and various
network topology without much additional complexity.

VI. RELATED WORK

Hadoop MapReduce [9], [12], [16] as a distributed process-
ing framework has become the dominant approach for pro-
cessing volumetric traffic in the big data era. Many researchers
have studied several options to improve MapReduce’s perfor-
mance. Recent work, using traditional IP networks, can be
grouped into two categories within given hardware resources:
(1) an advanced Hadoop resource scheduling algorithm design
in [2]–[4], [17]–[22] and (2) job optimization with optimized
configuration parameters using specific hardware in [23]–[25].

The Existing Hadoop MapReduce resource scheduling algo-
rithm manages to optimize the Hadoop cluster resources such
as slave nodes, CPUs, memories, networks, and disks. Those

algorithms fall mainly into three categories: FIFO, capacity-
based, and fairness schedulers. There are also heuristic de-
signs that focus on data locality with simulations. BAR [2]
proposed a heuristic task scheduling based on data locality by
simulation, by initially finding an ideal data location for job
processing in order to reduce the job running time. However,
the assumption of initial job starting and completion time
cannot stand in a real network. The proposed wait and random
peeking approach in [3] and a fair scheduler [4] improves data
locality. However, those methods can be further improved if in-
tegrated with network information and by using real-time data
traces. SHadoop [26] takes an approach of modifying standard
Hadoop’s map and reducing execution methods to avoid em-
ploying any particular hardware or supporting software. Other
similar works, which use adaptive job performance scheduling
under various cluster circumstances are in [22], [27].

Another aspect of improving MapReduce job completion
time can be achieved using a hardware acceleration ap-
proach [24], [28]. Special software and hardware need to
be deployed that may not be readily accessible for normal
cluster setups. Job specific optimization for MapReduce works
is presented in [23], [29]. However, it lacked generalized
methods for the overall performance of MapReduce jobs.

By using the Hadoop cluster under the traditional IP
network, MapReduce’s performance can be substantially de-
graded due to (1) the inherent characteristic of intensive data
shuffle frameworks to transfer a large amount of intermediate
data among slave nodes, and (2) default resources’ allocation
methods that lack the global view of real-time network traffic
information. TCP related optimization work for MapReduce
workloads is invested in [30]–[32], but the overall operation
still bears low-performance improvement.

New network frameworks have been studied to identify new
approaches to achieve a better MapReduce performance, such
as in MROrchestrator [33], Coflow [34] and Orchestra [35]
with much more sophisticated application integration designs.
Pythia [36] has similarities with our approach but lacks a
clear and comprehensive SDN system design with respect
to MapReduce and a related application-aware approach. A
preliminary idea on our approach was presented in [37]. Our
application-Aware network design on top of SDN provides a
common API interface, which can provide a full range of capa-
bilities for network management and monitoring for different
applications. We also measure the SDN control latency cost in
our test cases. Based on the test results, our AAN realization
can be better utilized for applications such as Hadoop M/R,
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which does not rely on a low lantency requirement.

VII. CONCLUSION AND FUTURE WORK

Our approach in this work was to develop an Application-
aware networking (AAN) environment with modularized com-
ponents and fine-grained control network behavior to improve
MapReduce job performance without changing the underlying
design of Hadoop MapReduce itself. We presented a software-
defined network (SDN) based system architecture and over-
the-top (OTT) software applications for MapReduce data flow
control. For example, we proposed a general application
interface regarding a traffic flow alternation mechanism. We
also identified major traffic patterns of various MapReduce
workloads based on HiBench benchmark suites using different
configurations, which is the key to understanding the problem
caused by data shuffle. A primary goal of our work was to
demonstrate a concept of AAN using SDN implementation
and MapReduce performance improvement without alternating
the existing Hadoop configuration.

Due to the system limitation of the GENI platform used
for our work, we were limited in our ability to use very
large scale big data analytics test cases that use MapReduce.
Nevertheless, we considered 330 test cases to present a robust
assessment of the traffic patterns, and demonstrated how our
AAN-SDN network softwarization approach with adaptive
traffic engineering can lead to a noticeable reduction in the job
completion time. In the future, we plan to explore additional
traffic engineering (TE) methods as well as larger platforms
for our approach.
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TABLE IV: Hibench Workload: Hardware Related Data Collection
Configurations A B-1 B-2 B-3 B-4 C-1 C-2 D-1 E-1 E-2 E-3

Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI
Sort

Time 42.00 4.30 58.67 6.25 52.67 6.25 51.67 3.79 52.33 3.79 155.00 22.77 158.67 45.83 248.33 49.33 115.67 18.97 127.00 43.53 169.00 160.09
CPU 68.17 5.17 38.27 1.23 45.33 5.09 36.80 4.35 43.70 1.51 29.10 14.33 33.53 14.62 32.37 14.90 23.17 3.11 21.67 6.48 21.67 14.69

Memory (MB) 342.43 7.40 638.60 31.18 641.13 44.53 620.70 10.82 641.13 13.53 1338.67 205.58 1380.97 85.03 1661.17 153.65 2556.47 254.89 2517.37 205.55 2694.87 387.48
WordCount

Time 47.64 12.40 64.72 4.29 69.12 10.93 62.90 13.81 62.20 6.44 173.07 17.08 167.54 55.09 269.42 34.56 135.14 85.04 104.03 8.61 133.07 40.71
CPU 69.67 2.73 37.17 16.37 41.03 11.80 38.13 10.13 45.87 0.94 30.93 11.18 29.63 3.11 36.27 6.02 27.20 12.44 33.30 5.19 26.07 17.27

Memory (MB) 457.13 33.30 631.57 3.19 761.13 249.26 760.87 110.73 797.63 38.83 1623.07 454.34 1552.73 7.50 1753.57 309.09 2466.47 390.76 2659.37 209.67 2533.60 812.82
Join

Time 108.97 25.89 123.22 4.38 160.40 14.21 117.85 21.37 111.69 9.53 288.49 38.53 167.75 8.13 383.02 30.65 200.23 38.76 213.25 10.19 217.93 31.11
CPU 44.20 2.59 28.70 1.72 32.47 5.72 28.03 1.80 32.37 2.74 26.00 4.24 21.80 3.76 30.33 7.35 18.33 1.52 18.87 1.37 20.67 3.49

Memocy (MB) 352.03 6.34 613.20 10.97 615.73 64.34 599.00 56.28 616.27 11.14 1289 162.99 1115.30 8.41 1510.03 166.02 2393.27 74.33 2357.73 122.34 2454.17 61.67
Scan

Time 37.06 3.01 33.03 1.06 94.95 15.89 53.89 6.62 38.77 0.91 117.22 32.34 81.25 13.52 143.82 22.66 99.77 14.34 106.57 31.39 123.03 66.02
CPU 34.97 3.28 16.30 0.43 31.30 2.62 25.00 3.82 26.67 1.03 29.43 3.43 36.97 1.46 34.8 5.68 19.63 0.87 18.67 1.93 18.20 6.76

Memocy (MB) 298.73 4.83 432.53 6.25 623.40 5.39 592.13 18.42 574.83 5.96 1258.20 70.75 1144.07 38.60 1322.47 243.37 2293.23 110.99 2256.8 42.53 2311.87 124.70
Pagerank

Time 148.55 9.55 214.96 36.21 153.65 33.36 194.66 44.4 177.75 9.23 571.13 19.67 427.82 31.55 781.25 41.6 567.69 37.02 473.73 11.02 496.78 20.52
CPU 72.80 10.24 44.80 13.17 59.37 30.66 46.37 6.85 60.27 5.74 38.70 8.35 51.17 6.39 33.17 8.68 24.70 1.72 26.40 10.25 31.83 12.51

Memocy (MB) 424.97 24.46 742.13 8.32 784.13 97.23 731.07 76.85 756.87 88.44 1693.47 261.40 1785.07 333.00 1841.30 46.89 2681.37 390.61 2595.93 415.55 2677.80 1044.33

TABLE V: Mapreduce Workload Traffic Flow Data Summary
Configurations A B-1 B-2 B-3 B-4 C-1 C-2 D-1 E-1 E-2 E-3

Traffic Catagories Port Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI Avg 95%CI
Sort

54310 0.06 0.051 0.098 0.087 0.074 0.024 0.097 0.151 0.091 0.092 0.154 0.056 0.251 0.137 0.236 0.525 0.288 0.418 0.216 0.062 0.358 0.197
Slaves To Master 8031 0.037 0.043 0.093 0.121 0.049 0.011 0.071 0.183 0.053 0.103 0.154 0.105 0.317 0.246 0.304 0.667 0.341 0.742 0.239 0.176 0.416 0.15

8030 0.01 0.006 0.016 0.012 0.012 0.002 0.014 0.012 0.015 0.009 0.025 0.038 0.033 0.008 0.043 0.093 0.036 0.021 0.037 0.018 0.044 0.028
Slaves To Slaves 50010 0 0 50.634 0.242 50.642 0.135 50.578 0.666 51.23 0.639 253.237 3.877 256.354 4.173 355.036 10.221 314.606 7.945 318.393 7.668 319.712 14.65

Others 22 0.006 0.003 0.011 0.003 0 0 0.003 0.014 0.004 0.017 0.011 0.049 0 0 0 0 0.027 0.117 0 0 0 0
8032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WordCount
54310 0.060 0.054 0.092 0.099 0.096 0.046 0.082 0.119 0.079 0.018 0.161 0.042 0.191 0.141 0.298 0.104 0.266 0.222 0.245 0.236 0.311 0.182

Slaves To Master 8031 0.036 0.049 0.072 0.074 0.064 0.037 0.053 0.002 0.05 0.046 0.155 0.164 0.173 0.132 0.359 0.11 0.248 0.253 0.255 0.441 0.278 0.329
8030 0.011 0.007 0.016 0.011 0.014 0.001 0.015 0.009 0.013 0.001 0.03 0.01 0.032 0.019 0.054 0.019 0.044 0.014 0.042 0.036 0.037 0.003

Slaves To Slaves 50010 0 0 0.913 0.035 0.686 0.038 0.665 0.001 0.68 0.002 1.561 0.4 1.363 0.351 2.373 0.522 3.063 0.847 3.488 0.511 3.706 0.885
Others 22 0.005 0.002 0.002 0.008 0.016 0.018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8032 0.019 0.083 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Join

54310 0.137 0.138 0.179 0.261 0.150 0.059 0.189 0.230 0.137 0.014 0.401 0.315 0.297 0.141 0.381 0.195 0.461 0.737 0.478 0.292 0.442 0.348
Slaves To Master 8031 0.081 0.066 0.113 0.19 0.129 0.031 0.148 0.125 0.119 0.035 0.395 0.069 0.271 0.219 0.461 0.02 0.517 1.326 0.532 0.567 0.646 0.387

8030 0.024 0.026 0.032 0.033 0.022 0.001 0.03 0.029 0.022 0 0.058 0.029 0.06 0.026 0.066 0.02 0.061 0.036 0.049 0.017 0.056 0.03
Slaves To Slaves 50010 0 0 35.886 2.624 34.774 1.765 36.278 3.007 35.182 1.745 85.577 7.607 105.285 1.128 101.337 19.675 242.593 5.054 242.128 8.268 238.858 20.447

Others 22 0.003 0.014 0.006 0.026 0 0 0 0 0 0 0.012 0.05 0 0 0 0 0.028 0.12 0 0 0 0
8032 0 0 0 0 0 0 0.006 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Scan
54310 0.077 0.151 0.151 0.248 0.062 0.006 0.125 0.241 0.066 0.011 0.311 0.410 0.200 0.097 0.363 0.458 0.353 0.228 0.474 0.430 0.269 0.126

Slaves To Master 8031 0.052 0.102 0.12 0.193 0.049 0.05 0.112 0.194 0.076 0.013 0.279 0.324 0.197 0.086 0.32 0.303 0.281 0.266 0.385 0.545 0.236 0.077
8030 0.012 0.025 0.019 0.03 0.008 0.001 0.018 0.03 0.008 0.001 0.035 0.048 0.02 0.003 0.043 0.039 0.041 0.038 0.039 0.038 0.027 0.003

50010 0 0 59.08 1.69 59.448 0.277 59.768 0.032 59.768 0.108 289.482 1.568 298.707 26.64 439.974 24.981 439.016 35.091 465.416 28.026 451.201 17.702
Others 22 0 0 0 0 0 0 0 0 0 0 0 0 103.318 444.542 0 0 0 0 0 0 0 0

8032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pagerank

54310 0.138 0.132 0.216 0.204 0.186 0.088 0.232 0.133 0.238 0.291 0.587 0.440 0.471 0.081 0.841 0.214 0.662 0.811 0.683 0.161 0.748 0.197
Slaves To Master 8031 0.09 0.059 0.198 0.182 0.169 0.12 0.199 0.076 0.202 0.188 0.522 0.061 0.533 0.157 0.817 0.132 0.615 0.955 0.81 0.2 0.926 0.172

8030 0.021 0.045 0.056 0.021 0.049 0.011 0.057 0.028 0.063 0.07 0.121 0.023 0.1 0.016 0.195 0.07 0.134 0.048 0.123 0.025 0.114 0.069
50010 0 0 127.878 4.058 129.949 5.251 130.879 2.618 127.304 6.722 579.303 18.069 571.967 6.101 757.69 9.565 718.863 16.586 732.344 39.643 738.479 5.218

Others 22 0.003 0.014 0.006 0.027 0 0 0.005 0.022 0 0 0.012 0.053 0 0 0 0 0.063 0.271 0 0 0 0
8032 0.015 0.065 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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